PHYSICAL REVIEW E VOLUME 54, NUMBER 4 OCTOBER 1996

Two-dimensional acoustic turbulence
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Two-dimensional turbulence of the waves with linear dispersion law is analyzed numerically at small Mach
numbers and large Reynolds numbers. It is shown that the energy-flux relation is clBsePt5 as for a
one-dimensional system. The analysis of the wave distributiérsipace shows that the anisotropic large-scale
pumping produces turbulence as a set of narrow jets that do not smear as the cascade proceeds towards high
wave numbers. The energy spectrum along the direction of a jet is cIcE(dq}pCKH‘Z due to shock waves,
while the spectrum per unit interval of wave number&{k)«P?%~* contrary to all previous predictions.
Probability density functions of the velocity and velocity differences are found and compared with recent
theoretical predictiond.S1063-651X96)03709-9

PACS numbds): 47.27.Jv, 43.25ty

The nonequilibrium state of a continuous medium undemwords, are plane shocks stable with respect to finite two-
an excitation of long density perturbation is called acoustiaddimensional perturbations? If plane shocks survive at devel-
turbulence. Long waves on shallow water also have a lineasped two-dimensional turbulence, what is their angular dis-
dispersion relationo,=ck and can be considered as two- tribution? As is usual in turbulence theory, there are quite a
dimensional sound. The energy cascade is expected towargsy predictions for the steady turbulence spectrum. Here we
small scales where dissipation takes place. Developing a d§ist them. Considering waves with small dispersion
scription of acoustic turbulence is a long-standing problem in, —ck(1+a%? and even smaller Mach numbers
turbulence theory1-5]. Even for a smgll Mach numbgr, the. (M<ak<1) one can apply weak turbulence theory and get
absence of the wave velocny_dlspersmn makes_non_lmear iNhe spectrunk, o PY%~423(3-972 \whered is the space di-
teraction strong. Waves moving in the same direction hav ensionality and flu® is the density of the energy dissipa-

the same velocity and interact strongly; any one—dimension%on rate[4]. Ford=3, the dispersion parametadisappears

perturbation thus breaks and creates a shock. .

The puzzle now is whether or not the weak interactionWh'Chl,lzed_3%2"’“(%lrov and Sagdeev to suggest the spectrum
with a turbulent backgroun(.e., with waves moving in dif- B Pk for the dispersionless limit as wee]. _Th's IS
ferent directions produces some kind of turbulent viscosity Probably the case at least for not very lakgehere infrared

that may prevent any given wave from breaking. In otherdivergences do not yet manifest themsel{#& In two di-
mensions, the weakly turbulent solution vanishes in the dis-

persionless limit. One may thus turn to dimensional analysis.
Assuming shocks to be absent, different hypothetical steady
r=0.025 spectra have been suggested from either dimensional reason-
ing (E,P¥k~1Y7[2]) or analysis of the one-loop approxi-
0.0015 | . mation E,xP¥%~1"'2andE,« P¥%~#5[7]). For the com-
plete self-similarity being assumed, the turbulence spectrum
can be written as followsE, = pwikd~®f (Pk®~ % pw?d) up to

T =0.02 unknown dimensionless functioi(¢) [4]. For example, re-
quiring frequency to disappear from that relation, one gets

= f(£)=&?® and Kolmogorov spectrum for incompressible
2 0.0010 | . X - : -

2 fluid. Requiringf= const, one gets universal spectia t

'i“;' for three-dimensiona{3D) acoustics, for instancks]). For

S d=2, we substitutes, = ck and getE, k2 as for the spec-

trum of shock waves. Indeed, if one assumes that acoustic
turbulence is a set of isotropically distributed locally plane
0.0005 | _ shocks, then in the spirit of Kadomtsev and Petviashdii
one can geE, k2 for any dimensionality. The flux depen-
dence for the shock spectrum could be found from the fol-
lowing simple estimates. The fluR relates to the energi
by a typical transfer time which is of the order of breaking
time P=E/r=EU/L. Hereu is a rms velocity perturbation
500 1000 1500 andL is a typical distance between shocks. In the last for-
Time mula, onlyu is related toE. According to Kadomtsev and
Petviashvili[1], the total energy is given by the set of jets
FIG. 1. Evolution of the total energy. each with the solid angléQ = (k, /k)4 1= (u/cg)(d~1"

I'=0.0075
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. . ' ) FIG. 4. Density profile for cross pumping.

10 ! FLUX 10
H=(3)[[p|V®|?+c?p?/py—c?p3I3p3]dx with the sound
FIG. 2. Energy-flux dependence. velocity ¢ [4]. Assuming periodic boundary conditions, we
consider turbulence in the square boxkirspace. Choosing
Since U/c)?=E &0/ pc? then units withc=py=1 and introducing the complex amplitude
a(k)=V1/&[ p,(k) +ikd(k)], we get the Hamiltonian den-
Eyoc PO-/(7=d)y=2, (1)  sity

To summarize, if we denotE, <Pk~ # then there are the

following predictions for two-dimensional acoustic turbu-
lence: @, B)=(%,%),%5),(%Y,(32). All those spectra are

isotropic. However, it is practically impossible to generatewith V,;,=(COS+COSH;,+ CoOho—1)(Kkeko/4)2 [4]. We
ideally isotropic large-scale pumping. As the cascade prosolve the dynamical equations

ceeds towards higlk, it may become either more or less ,

isotropic depending on the dispersion s{@h8]. In the dis- dga(k,t)/ot=—ioHl sa* (k.t) +I'(Kja(k,t), (2
persionless limit, the angular shape of the spectrum has to tie(k)
given by pumping(at least until such a high wave number
where nonlinear frequency renormalization provides fo

some dispersion =(0,1),(1,0), 1,0),(0~ 1) or double cross with four di-

In this paper we numerically analyze two-dimensional :
tic turbul ; box. We show below th :f\gonal_ points added that havg1,1)=1/2. We took t_he
acoustic TUTBLIENCE In @ square Lox. Te Show below a umerical values 10" =(50,75,100,150,200,250) at differ-

none of the above predictions is correct for the turbulence' W | ¢ P ; th th
produced by the pumping having the symmetry of the boyENt runs. We use also two forms of damping with the same

(cross and double cross linspace. The spectrum is close to amplitude but Qifferent widths: narrojwhenT (k) = — 1QF
E,«P?% 1. Thereforea= 2 which corresponds téL) with only for the points on the boundary and next tq them i.e., for
d=1 as for Burgers equatid®]. We show that the spectrum e'tEer_kX 10r1“ ';y eﬂual to '\rll 3ndf Nh_ 1d] and \.N'def[WheT]

is indeed a set of quasi-one-dimensional jets. The number df(K) = —10L for the one third of the domain i.e., for either

iets is determined by th : t di t i « Or ky lying in the interval[ 2N/3,N]]. The latter has been
JbeySZI;/ ;;le'\rmme y the pumping symmetry and 1S not give done to exclude the effect of aliasing on the spectrum. In the

rest of k space,I'(k)=0 which corresponds to the inertial
interval of turbulence. The nonlinear term in the equation
was calculated im space by using fast-Fourier transforms.

H= 2 [Kla?+Viaad(k—ki—ko)(afasa, +c.c)]

Ky ko

describes the external influence. Positive
r1“(k) corresponds to the pumping present at sniall
either cross with I'(k)=I" at four points K,k,)

The energy of the compressible fluid becomes Hamil
tonian in the variables densigyand potentiatb = (Vv). For
small variationsp=pg+p1, p1<<po, the Hamiltonian is
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FIG. 3. |a(k)| for double cross pumping. FIG. 5. Dispersion anglé 6(k).
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FIG. 6. Amplitude versu& along the jets. FIG. 8. Logarithm (logy) of velocity PDF for double cross

i pumping.
We exploited the symmetra(k)=a(—k) and made the

computations in the quadrangle<®,,k,<N with lattice  ceeds towards largk—Fig. 5. Different initial data were
size N+1 being 21,31,55,101 for different runs. All figures cnosen. All the results presented are independent of the ini-
are in dimensionless units. tial state.

Figure 1 shows the evolution of the total energy. The The k dependence of the wave amplitudes along the jet
oscillations around steady state are due to nonlinear interagyis is plotted on Fig. 6 for the run with the lattice size

tion (the frequency behaves approximatelyiasE=<I'> for  101x 101 and a double cross pumping. The upper curve cor-
not very large pumping they are most probably due to pe- yasponds to the main jet alongwhile the lower one corre-
riodic energy exchange between two groups of waves, thos@ponds to the diagonal jet. The energy spectrum
connected with the pumping and the rest of the SpeCtrumE(kH)=kH|a(k)|2 is close tok: 2 as due to shocks. Some
Such oscillations were first predicted [ib0] and were later flattening of the upper curve” near the dissipation cutoff is

seen in numerical queling of optical tqrbuler{dﬂ]. . E}robably due to the bottleneck phenomeidri.2].
The mean energy in the steady state is plotted against flu The shocks also manifest themselves at the probability

on Figli é for different s"ize_shofr:hedlatticedand difg%rent_pulmp'density functions of the velocity and density. One-point pair
:{ng. A a(tjq agree wel wit ft ﬁ (la(pen enee P typical  gisyribution function(PDF) of the velocityx component is
or a one-dimensional set of shocks. presented on Figs. 7 and 8.

Indeed, one may see from Fig.(® k spacg as well as It is seen that the small fluctuations in between the shocks
from Fig. 4(in r space that the turbulence is a set of narrow (responsible for the PDF near the idave Gaussian statis-
jets (four for the cross pumping and eight for double cjoss s hecause the parabolic fiolid line) works well. Shocks
of shock waves. Figure 3 is in log-log scale; it is clearly seen, .o responsible for two side maxima in PDF and the respec-
that the level of turbulence outside the jets is few orders OI-%ilve deviation from the Gaussian statistics. For a cross pump-
magnitudes less. The directions of the jets are determined qu, the shocks are of more or less the same amplitude and

pumping atk=1 or k= V2, the angular width of a jet does move with the same velocitfwhich also could be seen from
not increase(even slightly decreaspsas the cascade pro-

0.12 T —

0.10

0.08 +

0.08 -

1og10 [PDF(v)]

. l ‘ , 0.9 602 0.000 0002 0.004
-5.010 5,005 5.000 0.005 0.010 Velocity Difference

velocity v

FIG. 9. PDF of velocity differencedv(r) atr=3 for double
FIG. 7. Logarithm (logy) of velocity PDF for cross pumping. cross pumping.
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Fig. 4). The positions of the local side maxima at the velocitygested for turbulence ifl6], the instanton configuration be-
v~=*0.007 exactly correspond to the velocity of the frontsing a linear velocity profile. Therefore, the left wing of the
seen at Fig. 4. For a double cross pumping where obliqueelocity difference PDF given by the linear pieces of the
shocks(along the diagonal of the bpare generated as well, velocity profile is universal while the right wing depends on
there are two side maxima in the one-point PDF on Fig. §umping that prescribes the distribution of the shock ampli-
that correspond to the components of the velocities of the tudes.
direct and oblique shocks & +0.0035 andy ~ +0.0055). To conclude, our numerics suggest a simple consistent
The histogram of the velocity differences are presented ipicture of acoustic turbulence at small Mach and large Rey-
Fig. 9. It is asymmetric similarly to that which has beennolds numbers: a general anisotropic pumping produces jets
observed for one-dimensional turbuler{ds]. Again, there of shock waves moving at the directions of pumping
are two side maxima for the double cross pumping, themaxima. The angular widths of the jets decrease& &s
maxima correspond to the velocity jumps in a direct andcreases. The energy spectrum is due to one-dimensional
obligue shock, respectively. There is only one side maximungplane fronts E(kH)ock”_2 so that the local Mach number
for the cross pumpingnot shown. The left wing decays uv,/c decreases withk. The decrease of the angular width
faster than Gaussian; it could be fitted by exfAv|”] with  and Mach number makes it unlikely that the regime will
v close to 3. Note that the functional dependencequalitatively change dsincreases. We demonstrated that the
exd —|Av[®] has been predicted by Polyakov for 1D Burgersshocks are stable and they determine turbulence down to the
equation within the framework of a self-consistent conjectureviscous scale. The main result of the paper is the macro-
on the structure of the point-splitting anomalg4]. The  scopic relationExP?3, thus shown to be valid for 2D as
same asymptotic law for Burgers equation has been obtainedell as for 1D, it is insensitive to the behavior at high
by Gurarie and Migdal15] by the instanton formalism sug- because the most of the energy is contained at sknall
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