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Two-dimensional turbulence of the waves with linear dispersion law is analyzed numerically at small Mach
numbers and large Reynolds numbers. It is shown that the energy-flux relation is close toE}P2/3 as for a
one-dimensional system. The analysis of the wave distribution ink space shows that the anisotropic large-scale
pumping produces turbulence as a set of narrow jets that do not smear as the cascade proceeds towards high
wave numbers. The energy spectrum along the direction of a jet is close toE(ki…}ki

22 due to shock waves,
while the spectrum per unit interval of wave numbers isE(k)}P2/3k21 contrary to all previous predictions.
Probability density functions of the velocity and velocity differences are found and compared with recent
theoretical predictions.@S1063-651X~96!03709-9#

PACS number~s!: 47.27.Jv, 43.25.1y

The nonequilibrium state of a continuous medium under
an excitation of long density perturbation is called acoustic
turbulence. Long waves on shallow water also have a linear
dispersion relationvk5ck and can be considered as two-
dimensional sound. The energy cascade is expected towards
small scales where dissipation takes place. Developing a de-
scription of acoustic turbulence is a long-standing problem in
turbulence theory@1–5#. Even for a small Mach number, the
absence of the wave velocity dispersion makes nonlinear in-
teraction strong. Waves moving in the same direction have
the same velocity and interact strongly; any one-dimensional
perturbation thus breaks and creates a shock.

The puzzle now is whether or not the weak interaction
with a turbulent background~i.e., with waves moving in dif-
ferent directions! produces some kind of turbulent viscosity
that may prevent any given wave from breaking. In other

words, are plane shocks stable with respect to finite two-
dimensional perturbations? If plane shocks survive at devel-
oped two-dimensional turbulence, what is their angular dis-
tribution? As is usual in turbulence theory, there are quite a
few predictions for the steady turbulence spectrum. Here we
list them. Considering waves with small dispersion
vk5ck(11a2k2) and even smaller Mach numbers
(M!ak!1) one can apply weak turbulence theory and get
the spectrumEk}P

1/2k2d/2a(32d)/2, whered is the space di-
mensionality and fluxP is the density of the energy dissipa-
tion rate@4#. Ford53, the dispersion parametera disappears
which led Zakharov and Sagdeev to suggest the spectrum
Ek}P

1/2k23/2 for the dispersionless limit as well@2#. This is
probably the case at least for not very largek where infrared
divergences do not yet manifest themselves@6#. In two di-
mensions, the weakly turbulent solution vanishes in the dis-
persionless limit. One may thus turn to dimensional analysis.
Assuming shocks to be absent, different hypothetical steady
spectra have been suggested from either dimensional reason-
ing (Ek}P

4/7k211/7 @2#! or analysis of the one-loop approxi-
mation (Ek}P

3/5k217/12andEk}P
3/5k28/5 @7#!. For the com-

plete self-similarity being assumed, the turbulence spectrum
can be written as follows:Ek5rvk

2kd26f (Pk52d/rvk
3) up to

unknown dimensionless functionf (j) @4#. For example, re-
quiring frequency to disappear from that relation, one gets
f (j)}j2/3 and Kolmogorov spectrum for incompressible
fluid. Requiring f5 const, one gets universal spectra (k21

for three-dimensional~3D! acoustics, for instance@5#!. For
d52, we substitutevk5ck and getEk}k

22 as for the spec-
trum of shock waves. Indeed, if one assumes that acoustic
turbulence is a set of isotropically distributed locally plane
shocks, then in the spirit of Kadomtsev and Petviashvili@1#
one can getEk}k

22 for any dimensionality. The flux depen-
dence for the shock spectrum could be found from the fol-
lowing simple estimates. The fluxP relates to the energyE
by a typical transfer timet which is of the order of breaking
time P.E/t.Eu/L. Hereu is a rms velocity perturbation
andL is a typical distance between shocks. In the last for-
mula, onlyu is related toE. According to Kadomtsev and
Petviashvili @1#, the total energy is given by the set of jets
each with the solid angledV.(k' /k)d21.(u/cs)

(d21)/2.FIG. 1. Evolution of the total energy.
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Since (u/c)2.EdV/rc2 then

Ek}P
~52d!/~72d!k22. ~1!

To summarize, if we denoteEk}P
ak2b then there are the

following predictions for two-dimensional acoustic turbu-
lence: (a,b)5( 47,

11
7 ),(

3
5,

17
12),(

3
5,

8
5),(

3
5,2). All those spectra are

isotropic. However, it is practically impossible to generate
ideally isotropic large-scale pumping. As the cascade pro-
ceeds towards highk, it may become either more or less
isotropic depending on the dispersion sign@4,8#. In the dis-
persionless limit, the angular shape of the spectrum has to be
given by pumping~at least until such a high wave number
where nonlinear frequency renormalization provides for
some dispersion!.

In this paper we numerically analyze two-dimensional
acoustic turbulence in a square box. We show below that
none of the above predictions is correct for the turbulence
produced by the pumping having the symmetry of the box
~cross and double cross ink space!. The spectrum is close to
Ek}P

2/3k21. Therefore,a5 2
3 which corresponds to~1! with

d51 as for Burgers equation@9#. We show that the spectrum
is indeed a set of quasi-one-dimensional jets. The number of
jets is determined by the pumping symmetry and is not given
by 2p/dV.

The energy of the compressible fluid becomes Hamil-
tonian in the variables densityr and potentialF5(¹v). For
small variationsr5r01r1 , r1!r0, the Hamiltonian is

H5( 12)*@ru¹Fu21c2r1
2/r02c2r1

3/3r0
2#dx with the sound

velocity c @4#. Assuming periodic boundary conditions, we
consider turbulence in the square box ink space. Choosing
units with c5r051 and introducing the complex amplitude
a(k)5A1/2k@r1(k)1 ikF(k)#, we get the Hamiltonian den-
sity

H5 (
k,k1 ,k2

@kuaku21Vk12d~k2k12k2!~ak* a1a21c.c.!#

with Vk125(cosuk11cosu121cosuk221)(kk1k2/4)
1/2 @4#. We

solve the dynamical equations

]a~k,t !/]t52 idH/da* ~k,t !1G~k!a~k,t !, ~2!

G(k) describes the external influence. Positive
G(k) corresponds to the pumping present at smallk:
either cross with G(k)5G at four points (kx ,ky)
5(0,1),(1,0),(21,0),(0,21) or double cross with four di-
agonal points added that haveG(1,1)5G/2. We took the
numerical values 104G5(50,75,100,150,200,250) at differ-
ent runs. We use also two forms of damping with the same
amplitude but different widths: narrow@whenG(k)5210G
only for the points on the boundary and next to them i.e., for
either kx or ky equal toN and N21# and wide †when
G(k)5210G for the one third of the domain i.e., for either
kx or ky lying in the interval@2N/3,N#‡. The latter has been
done to exclude the effect of aliasing on the spectrum. In the
rest of k space,G(k)50 which corresponds to the inertial
interval of turbulence. The nonlinear term in the equation
was calculated inr space by using fast-Fourier transforms.

FIG. 2. Energy-flux dependence.

FIG. 3. ua(k)u for double cross pumping.

FIG. 4. Density profile for cross pumping.

FIG. 5. Dispersion angleDu(k).
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We exploited the symmetrya(k)5a(2k) and made the
computations in the quadrangle 0<kx ,ky<N with lattice
size 2N11 being 21,31,55,101 for different runs. All figures
are in dimensionless units.

Figure 1 shows the evolution of the total energy. The
oscillations around steady state are due to nonlinear interac-
tion ~the frequency behaves approximately asn}E}G2 for
not very large pumping!; they are most probably due to pe-
riodic energy exchange between two groups of waves, those
connected with the pumping and the rest of the spectrum.
Such oscillations were first predicted in@10# and were later
seen in numerical modeling of optical turbulence@11#.

The mean energy in the steady state is plotted against flux
on Fig. 2 for different sizes of the lattice and different pump-
ing. All data agree well with the dependenceE}P2/3 typical
for a one-dimensional set of shocks.

Indeed, one may see from Fig. 3~in k space! as well as
from Fig. 4~in r space! that the turbulence is a set of narrow
jets ~four for the cross pumping and eight for double cross!
of shock waves. Figure 3 is in log-log scale; it is clearly seen
that the level of turbulence outside the jets is few orders of
magnitudes less. The directions of the jets are determined by
pumping atk51 or k5A2, the angular width of a jet does
not increase~even slightly decreases! as the cascade pro-

ceeds towards largek—Fig. 5. Different initial data were
chosen. All the results presented are independent of the ini-
tial state.

The k dependence of the wave amplitudes along the jet
axis is plotted on Fig. 6 for the run with the lattice size
1013101 and a double cross pumping. The upper curve cor-
responds to the main jet alongx while the lower one corre-
sponds to the diagonal jet. The energy spectrum
E(ki)5kiua(k)u2 is close toki

22 as due to shocks. Some
flattening of the upper curve near the dissipation cutoff is
probably due to the bottleneck phenomenon@4,12#.

The shocks also manifest themselves at the probability
density functions of the velocity and density. One-point pair
distribution function~PDF! of the velocityx component is
presented on Figs. 7 and 8.

It is seen that the small fluctuations in between the shocks
~responsible for the PDF near the top! have Gaussian statis-
tics because the parabolic fit~solid line! works well. Shocks
are responsible for two side maxima in PDF and the respec-
tive deviation from the Gaussian statistics. For a cross pump-
ing, the shocks are of more or less the same amplitude and
move with the same velocity~which also could be seen from

FIG. 6. Amplitude versusk along the jets.

FIG. 7. Logarithm (log10) of velocity PDF for cross pumping.

FIG. 8. Logarithm (log10) of velocity PDF for double cross
pumping.

FIG. 9. PDF of velocity differencesDv(r ) at r53 for double
cross pumping.

54 4433BRIEF REPORTS



Fig. 4!. The positions of the local side maxima at the velocity
v'60.007 exactly correspond to the velocity of the fronts
seen at Fig. 4. For a double cross pumping where oblique
shocks~along the diagonal of the box! are generated as well,
there are two side maxima in the one-point PDF on Fig. 8
that correspond to thex components of the velocities of the
direct and oblique shocks (v'60.0035 andv'60.0055).

The histogram of the velocity differences are presented in
Fig. 9. It is asymmetric similarly to that which has been
observed for one-dimensional turbulence@13#. Again, there
are two side maxima for the double cross pumping, the
maxima correspond to the velocity jumps in a direct and
oblique shock, respectively. There is only one side maximum
for the cross pumping~not shown!. The left wing decays
faster than Gaussian; it could be fitted by exp@2uDvun# with
n close to 3. Note that the functional dependence
exp@2uDvu3# has been predicted by Polyakov for 1D Burgers
equation within the framework of a self-consistent conjecture
on the structure of the point-splitting anomaly@14#. The
same asymptotic law for Burgers equation has been obtained
by Gurarie and Migdal@15# by the instanton formalism sug-

gested for turbulence in@16#, the instanton configuration be-
ing a linear velocity profile. Therefore, the left wing of the
velocity difference PDF given by the linear pieces of the
velocity profile is universal while the right wing depends on
pumping that prescribes the distribution of the shock ampli-
tudes.

To conclude, our numerics suggest a simple consistent
picture of acoustic turbulence at small Mach and large Rey-
nolds numbers: a general anisotropic pumping produces jets
of shock waves moving at the directions of pumping
maxima. The angular widths of the jets decreases ask in-
creases. The energy spectrum is due to one-dimensional
~plane! fronts E(ki)}ki

22 so that the local Mach number
vk /c decreases withk. The decrease of the angular width
and Mach number makes it unlikely that the regime will
qualitatively change ask increases. We demonstrated that the
shocks are stable and they determine turbulence down to the
viscous scale. The main result of the paper is the macro-
scopic relationE}P2/3, thus shown to be valid for 2D as
well as for 1D, it is insensitive to the behavior at highk
because the most of the energy is contained at smallk.
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